B: Some Calculus Background for Partial Dif-
ferential Equations

It is assumed that anyone embarking on the study of partial differential
equations has at their fingertips the basics of partial differentiation and in-
tegration of (multivariable) functions, and elementary (ordinary) differential
equations. If there has been too much of a gap since you took those courses,
you need to spend time reviewing that material, or you will not be successful
in learning partial differential equation techniques. Below is a brief guide to
some needed calculus material, but it is by no means a complete representa-
tion of all relevant material.

1 Integration and Differentiation

Here is a result concerning an integral I(t) = f;((tt)) f(z,t) dz, which has vari-

able limits of integration, that is needed for the subject, and various exercises:

Leibniz Theorem: If f(z,t) and Jf/0t are continuous on the rectangle
[A, B] x [¢,d], where [A, B] contains the union of all intervals [a(t), b(t)], and
if a(t) and b(t) are differentiable on [c, d], then

d[ d b(t) b(t) 8f
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Exercises
1. Let I(t ft sin(z) dx. First, use the Leibniz theorem to compute

dl/dt. Second mtegrate the integral directly, then take the derivative
to obtain the same result.

2. Define the two-variable function u(x,t) = ffjtt g(y) dy for an arbitrary

integrable function ¢(y), and show that w(z,t) is a solution to the
partial differential equation 0%u/0t? = §%u/0x?.

Now we consider some operators from multivariable calculus.
1. grad: Let ¢ = ¢(z,y, 2) be a differentiable function. Then
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where g,j,l% are the unit vectors in the x,y, z directions, respectively.
Notationally, grad ¢ is also written as V.

2. div: Suppose F = (f1, f2, f3) is a vector function from R? to R3, then

divF—v.F =20 O O

3. curl:

curl F =V xF= (22 22 2L 05 2l By

If you remember how to take the determinant of a 3 x 3 matrix, one
way of remembering the curl is by
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These can be combined in various ways. An important case is
0? 0? 0?
div grad = V? = —— + — + — .
I 0x? * 0y? + 072

If u=wu(z,y,2) has two derivatives in each variable, then
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is called Laplace’s equation.

Now consider domain D C R", where usually n = 2,3. By domain in these
Notes we mean an open, bounded, connected set, which is also simply con-
nected ("no holes”). We also assume D has a piecewise smooth boundary,
denoted by 0D. By this we mean it has a unique unit outward normal vector,
v, defined everywhere on 0D, except possibly at a finite number of points
(think of a rectangle in the plane), or a lower dimensional set for n > 3, like
a cube. Then we have the important theorem for our use



Divergence Theorem: Let g be any continuous scalar function defined
in D and its boundary 0D, and be continuously differentiable in D, and let
F' be a continuously differentiable vector function defined in D. Then

/D{gdw (F)+F'g7“ad(g)}dx:/aDgF-Vds )

Remark about notation: This theorem and others we mention in these Notes
hold in arbitrary dimension, so instead of writing multiple integral signs, the
usual practice is to use one integral sign and let the context determine the
details. For example, in the plane, if D = {(z,y) : |z| < 1,0 < y < 3},
instead of writing f03 f_ll f(x,y) dedy, we might write [, f(x) dx, assuming
D has been previously defined, and assuming x = (z,y). The differential ds
on the right side of the above expression has to be defined in terms of the
geometry of the boundary.

FEzxercises

1. Let F' = Vu = grad(u), and substitute this into the divergence theorem
to obtain [,{gV?u+ Vu-Vg}ldr = [, g(Vu-v)ds. This is Green’s
first identity.

2. (Green’s second identity): Take Green’s first identity, exchange g and
u, and subtract to obtain
JplgViu+Vu-Vy}dr = [, (uVg—gVu)-vds. This is Green’s second
identity.

These results hold in arbitrary dimensions n > 2, but a useful theorem for
just the planar domains is

Green’s Theorem: Let D be a planar domain with the characteristics
mentioned above, Consider D parameterized such that it is traversed once
with D on the left (traversed counterclockwise). Let p(x,y) and ¢(z,y) be
continuously differentiable functions defined on the closure of D, i.e. on D
and its boundary. Then

/ (¢ — py) dxdy = / pdx + qdy
D oD



2 Trigonometric and Hyperbolic Functions

We use the trig. addition formulas over and over in this class, so

sin(z £ y) = sin(x) cos(y) £ cos(x) sin(y)
cos(z £ y) = cos(x) cos(y) F sin(z) sin(y)

In particular, cos(2z) = cos?(z) — sin?(z) = 1 — 2sin?(x) = 2cos?(x) — 1, so,
for example, sin?(z) = (1 — cos(2z))/2.

Ezercises
1. For arbitrary positive integers n, m, show

fol sin(nmz) sin(mnrx) de = { (1)/2 Wm”b i Z

fol cos(nmx)sin(mnzx) de =0 for all n and m

2. There are any number of sources showing the graphs of the trig func-
tions, so you are responsible for knowing the graphs of the trig func-
tions. Sketch a graph of tan(z) for x > 0 and superimpose on the
graph the graph of x/2. Numerically approximate the first 5 positive
solutions to the transcendental equation tan(x) = x/2.

3. Show that sin(1lmx) cos(107mx) = (sin(217x) + sin(7z)) /2.

The hyperbolic functions are sinh(x) = (e*—e ") /2, cosh(z) = (e*+e~*) /2, tanh(x) =
sinh(zx)/cosh(x), etc., so you should be able to sketch their graphs and know
that

<L sinh(z) = cosh(z) L cosh(z) = sinh(x)

sinh(z 4 y) = sinh(x) cosh(y) + cosh(x) sinh(y)
cosh(x + y) = cosh(z) cosh(y) & sinh(x) sinh(y)

FEzercises

1. Show that sinh(z), tanh(x) are odd functions and sketch a graph of
each. Show that cosh(z), sech(x) are even functions and sketch a graph
of each.



2. Show that sinh(ax) and cosh(az) form a fundamental set of solutions

for the differential equation % — a’>u = 0. So, you must show they

satisfy the equation and that they are linearly independent.

3 Sequences and Series of Functions

We will be dealing with series of functions in these Notes, so you should recall
a few properties about sequences and series.

Definition: Convergence of a series: A series of real numbers >~ a, =
ay+as+ . .. converges if the tail end can be made arbitrarily small, i.e. given
any tolerance ¢ > 0, there is an M > 1 such that form > M, | a,| <e.

Definition: Absolute Convergence: Series >~ a, is absolutely conver-
gent if Y >°  |a,| converges.

Remark on Comparison Test: If |a,| < b, for all n, and if > b, con-
verges, then Y " a, converges absolutely. The countrapositive necessarily
follows: If > 77 |a,| diverges, so does Y °b,. The limit comparison test
states that if a,, > 0,6, > 0, if lim,,_,o a, /b, = L, where 0 < L < oo, and if
>0 by, converges, then so does Y (" ay,.

Remark on the Ratio Test: The series Y. - a, converges absolutely if
|ant1]

lim,, o Tl <p<l1,forn>N>1 (We do not care if the inequality is

lan

not met for the first NV terms.)

Ezamples: For > 1°(3)", that is, a, = 1/2", hence |a,i1|/]an] = 1/2, so
the series converges absolutely. For > 7° %, |an41]/|an| = 25 — 1. Hence,
there is no upper bound less than 1, so the ratio test fails, i.e. gives us no
information. This series actually diverges. The ratio test also fails for the
series Y17 =5, but the series converges to 72/6. In fact, the p-series > 1° -

npP
converges for any p > 1, and diverges (is infinite) for p < 1.

Definition: Uniform convergence of a sequence of functions: As-
sume the sequence {f;},—12. . of functions is defined on an interval Z of R.
Then { f,}n=12.. converges uniformly on Z to f(z) if for any tolerance ¢ > 0,



there is an M such that for m > M, |f.(x) — f(z)| < e for all x € 7.

Definition: Uniform convergence of a series of functions: If the
f1s are defined on an interval Z, then > >° | f,(z) converges uniformly on
T to f(x) if the sequence of partial sums {Sx}n>1, where Sy = S f,(),
converges uniformly to f(x) on Z.

Comparison Test: If |f,(z)| < ¢,, for all n and for all x € [a, b], where the
s are constants, and if > "¢, converges, then Y [° f.(z) converges uni-
formly in the interval [a, b], as well as absolutely.

Convergence Theorem: If > " f,(x) converges uniformly to f(x) in the

interval [a, b], and if all the functions f,(z) are continuous in [a, b], then the
sum f(x) is also continuous in [a, b], and

g/abfn(:c) dmz/abf(a;) dz .

This last statement is called term-by-term integration.
Convergence of Derivatives: If all the functions f,(x) are differentiable
in [a, b], and if the series " ° f,,(¢) converges for some ¢, and if the series of

derivatives > | f, (z) converges uniformly in [a, b], then > {° f,(z) converges
uniformly to a function f(x) and

> fla)=f(z) forz€ab].

This is term-by-term differentiation.



